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ABSTRACT 
This paper presents image modeling and restoration 
by higher-order statistics based 2-D inverse filters. A 
given original image +(m, n) is processed by an opti- 
mum inverse filter v(m, n) which is designed by max- 
imizing cumulant based criteria J r ,m  = ICmlr/ICrlm 
where r is even, m > T 2 2 and C,,, (Cr) denotes mth- 
order (rth-order cumulant of the output e(m,n) of 

be modeled as the output of a linear shift-invariant 
(LSI) system h(m, n) driven by e(m, n) where h(m, n) 
is a stable inverse filter of v(m,n) .  When a blurred 
image y(m,n)  = t(m,n) * g(m,n,) rather than the 
original image z(m,  n) is given, t (m,  n) can be re- 
stored by first estimating e (m,n)  using the previ- 
ous inverse filter criteria and then obtain t(m,n) = 
e(m, n) * h(m, n). Some experimental results are pro- 
vided to support the proposed image modeling and 
restoration method. 

the 2-D inverse A Iter. The original image z (m,  n) can 

1. INTRODUCTION 

Assume that z(n) is the non-Gaussian output sig- 
nal of an unknown linear shift-invariant (LSI) sys- 
tem h(n)  driven by an independent identically dis- 
tributed (i.i.d.) non-Gaussian random signal U(.). 
Cumulant based inverse filter criteria [l-41 maximizing 
Jl.,m(v(n)) = ICmlr/lCrlm with admissible P and m 
have been considered for the estimation of the inverse 
filter v ( n )  of the unknown LSI system h ( n )  where C,,, 
denotes the mth-order cumulant of the output signal 
e(n) of the inverse filter v ( n )  with input ~ ( n ) .  

Tugnait [5] extended the above criteria J2,3, J2,4 
and J4,6 31 to the 2-dimensional (2-D) case for esti- 

system with only non-Gaussian output +(m, n) of the 
system, and he [6] also proposed a texture synthesis 
method using these 2-D inverse filter criteria. 

In this paper, we theoretically show that the above 
criteria J,,,, which only use two cumulants, for the 
2-D case are applicable only for r being even and 
m > r 1 2. These criteria for admissible values 
of r and m can be applied to image modeling and 
restoration[7,8], by treating images as the output of a 
2-D LSI system driven by a 2-D non-Gaussian random 

mation o i ARMA parameters of an unknown 2-D LSI 

field. Some experimental results for image modeling 
and restoration using these inverse filters and a 2-D 
correlation based prediction error method [9] are pro- 
vided. Finally we draw some conclusions. 

2. TWO-DIMENSIONAL CUMULANT 
BASED INVERSE FILTERS 

Assume that the given 2-D measurements +(m,n), 
m = 0,1, ..., N - 1, n = 0,1, ..., N - 1 are generated 
from the following convolutional model: 

+(m, n) = u(m, n) * h(m, n) + w(m, n) (1) 

with the following assumptions: 

h ( m , n )  is an LSI stable system and a stable 
inverse system hr(m, n.) of h(m, n) exists. 

The driving input u(m, n) is real, zero-mean, 
i.i.d., non-Gaussian with mth-order cumulant 
ym where m 2 3. 

The measurement noise w(m,n) is Gaussian 
with unknown statistics. 

u(m, n) and w ( m ,  n) are statistically indepen- 
dent. 

Assume that v(m,n)  is a stable 2-D inverse filter 
estimate for h i (m ,  n). Let 

e(m, n) = +(m, n) * v(m, n) (2) 

The cumulant based inverse filter criteria using two 
cumulants of e(m, n) with different cumulant orders 
are described in the following Theorem: 

Theorem 1. Assume that z (m,  n) is generated from 
the model given by (1) under the previous assump- 
tions ( A l )  through (A4). Let 

(3) 

where Cm (Cr) denotes the mth-order (rth-order) cu- 
mulant of e(m,n)  given by (2).  Then the following 
statements are true: 
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Jr,m(v(m, n))  is bounded only if r = 2s  (i.e., T- is  
even), m = I f s  > r where I > s 2 1. Moreover, 

The optimum G(m, n )  associated with J2s,1+s( 

G(m,n)) = maz{J~S,~tS(v(m,n))}  where 1 > 
s 2 1 satisfies 

q m ,  n )  * h(m, n )  = a6(n - 7 1 ,  m - T 2 ) ,  ( 5 )  

where Q # 0 is a scale factor and r1 and r2 are 
unknown integers, for the case that s = 1 and 
SNR = 00 and the case that s > 1 and SNR is 
finite. 

Chi and Wu [2] have shown this theorem for l-D case. 
The proof of this theorem for 2-D case follows the 
same procedure as that for l-D case. 

In practice, cumulants Cm and C, in Jr ,m given 
by (3) must be replaced by the corresponding sample 
cumulants, and the associated inverse filter v ( m ,  n) 
can be assumed to be an FIR filter. Because J,,, 
is a highly nonlinear function of v(m,n), one has 
to resort to  iterative optimization algorithms to esti- 
mate the coefficients of v ( m ,  n). The associated opti- 
mum e(m, n)  is then an estimate for the driving input 
u(m,  n). 

3. APPLICATION OF INVERSE FILTERS 
T O  IMAGE MODELING 

Assume that z (m ,n )  is an original image which is 
modeled as (1) where w ( m , n )  = 0 and h(m,n) is a 
causal AR system, i.e., z (m,  n) can be expressed as 

z(m,  n)  = u(m, n )  * h(m, n) 
P P  

= c . (ICl l ) z (m - I ,  n - I )  + u(m, n )  ( 6 )  

which implies that the inverse filter h ~ ( m , n )  = 
a(m, n)  of h( m, n) is a ( p +  1) x ( p +  1) causal FIR filter 
with region of support S = {(m,  n )  I 0 L m 5 p ,  0 5 
n 5 p } .  Therefore, the optimum inverse filter 6(m, n)  
associated with J,,, can be used as an estimate for 
the AR model coefficients a ( m ,  n )  of the image. Next, 
Let us show an example for image modeling. 

Example 1. An 128x 128 image shown in Figure l (a)  
was processed by the optimum inverse filter associated 
with J2,3 assuming that the inverse filter v(&, n) is a 
3 x 3 causal FIR filter. The processed image is shown 
in Figure l(b) and the AR parameters u(m,n) are 
shown in Table 1. One can see, from Table 1 and Fig- 
ures l (a)  and l (b) ,  that the obtained AR model coef- 
ficients u(m, n)  of the image are quite close to b(m, n )  
which accounts for the similarity of these two images. 

4. APPLICATION OF INVERSE FILTERS 
TO IMAGE RESTORATION 

Assume that the original image z(m, n)  is blurred by 
an LSI system and the blurred image y(m, n)  is given 
by 

y(m, .) = z (m ,  .) * s(m1.1 
= u(m1.) * ( W l . )  * !I(%.)) (7) 

Let v ( m ,  n )  be the inverse filter of the system h(m, n)* 
g m, n associated with the blurred image y(m, n)  and 
6 ( 1  m,n be the associated optimum cumulant based 
inverse filter. Assuming that the image model h(m,  n )  
is known, the restored image can be obtained by 

i ( m ,  n)  = y(m, n )  * fi(m, n)  * h(m, n )  (8) 
which means that the optimum restoration filter is 
given by .ir(m,n) * h(m,n).  In other words, the im- 
age restoration can be performed without need of any 
knowledge about the blurred system but the image 
model must be given in advance. Next, let us show 
some experimental results for image restoration. 

Example 2. The original image z (m,n)  shown in 
Figure 1 a) was also used in this example. Three cases 
for the b urred system G(z l ,  z2) are considered: 

Case 1: G(rl , 2 2 )  is a 3 x 3 causal FIR filter 

Case 2: G(z1, z2) is an allpass filter 

Case 3: G ( q ,  2 2 )  is a causal AR filter 

Again, the inverse filter criteria J2,3 was used to ob- 
tain the optimum inverse filter v(m, n)  which was  as- 
sumed to be a causal FIR filter. 

For Case 1, the blurred image is shown in Figure 
2(a). The inverse filter was assumed to be a 5 x 5 
causal FIR filter. The restored image obtained by the 
optimum inverse filter associated with J2,3 is shown 
in Figure 2(b). For comparison, the restored image 
obtained by the 2-D correlation based prediction er- 
ror method [9] is also shown in Figure 2(c). One can 
see that the restored image shown in Figure 2(b) is 
much better than the one shown in Figure 2(c). 

For Cases 2 and 3, the inverse filter was assumed 
to be a 7 x 7 causal FIR filter and a 5 x 5 causal 
FIR filter, respectively. The results corresponding to 
those shown in Figures 2(a) through 2(c) are shown 
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in Figures 3(a) through 3(c) for Case 2 and Figures 
4(a) through 4(c) for Case 3, respectively. The same 
conclusion as drawn from Case 1 also applies for these 

[2] C.-Y. Chi and M.-C. Wu, “Inverse filter criteria 
for blind deconvolution and equalization using two 
cumulants,” submitted to Signal Processing. 

m=O 
m = 1 
m = 2  

two cases. 

5. CONCLUSIONS 

n = O  n = l  n = 2  
1.0000 -0.0951 0.0586 

-0.1114 0.0513 -0.0003 
0.0565 -0.0033 0.0101 

The applications of cumulant based inverse filter cri- 
teria Jz5,1+2 given by ( 3 )  where 1 > s 2 1 to image 
modeling and restoration have been presented. The 
image restoration can be performed without need of 
any knowledge about the blurred system but the im- 
age model must be given in advance. Some experi- 
mental results are provided to illustrate these appli- 
cations. However, the original image and the blurred 
systems used in the experiment have broadband spec- 
tra. The case that either the image or the blurred 
system does not have a broadband spectrum is still 
under study. 
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Fig. 1. Experimental results associated with Example 1. (a) The original image ~ ( m , n )  (128 x 128); (b) the 
processed image c ( m ,  n )  (input of the A R  image model) by the optimum inverse filter associated with J2,3. 
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Fig. 2. Experimental results for Case 1 associated with Example 2. (a) Blurred image: (b) the restored image 
obtained by the optimum inverse filter associated with 52,3; (c) the restored image obtained by the 2-D correlation 
based prediction error method. (The original image is the one shown in Figure l(a).) 

Fig. 3. Experimental results for Case 2 associated with Example 2 .  (a) Blurred image; (b) the restored image 
obtained by the optimum inverse filter associated with 52,3; (c) the restored image obtained by the 2-D correlation 
based prediction error method. (The original image is the one shown in Figure l(a).) 

(a> (C> 

Fig. 4. Experimental results for Case 3 associated with Example 2. (a) Blurred image; (b) the restored image 
obtained by the optimum inverse filter associated with J2,3; (c) the restored image obtained by the 2-D correlation 
based prediction error method. (The original image is the one shown in Figure l (a ) . )  
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